All AlBridge

AlBridge Lecture 8

Introducing Unsupervised Learning

Supervised learning
Learn from data labeled with the "right answers"

Unsupervised Learning

Clustering

Dimension reduction

Clustering: Google news

Giant panda gives birth to rare twin cubs at Japan's oldest zoo

USA TODAY • 6 hours ago

- Giant panda gives birth to twin cubs at Japan's oldest zoo

CBS News • 7 hours ago

- Giant panda gives birth to twin cubs at Tokyo's Ueno Zoo WHBL News • 16 hours ago
- A Joyful Surprise at Japan's Oldest Zoo: The Birth of Twin Pandas
The New York Times • 1 hour ago
- Twin Panda Cubs Born at Tokyo's Ueno Zoo

PEOPLE • 6 hours ago
回 View Full Coverage

Clustering: DNA microarray

genes (each row)

Clustering: Grouping customers

Grouping Customers

Anomaly Detection

Credit: Anomaly Detection

K-means clustering

1. pick a K-number of clusters
2. randomly pick a series of "centroids"
3. assign each particle to the centroid closest to it 4.move the centroid to the weighted geometric center of samples assigned to it
 0

4. pick a K-number of clusters
5. randomly pick a series of "centroids"
6. assign each particle to the centroid closest to it 4.move the centroid to the weighted geometric center of samples assigned to it 5. Repeat 3-4 until centroids stop moving!

Did we get back the same clusters?

Nope. And that's OK.

K-means is an indeterministic algorithm - it has built-in randomness

Unsupervised Learning

Clustering

Dimension reduction

Exploring Dimensions and Basis Vectors

Exploring Dimensions and Basis Vectors

This gray point can be expressed as 3 blocks from x axis and 2 blocks from the y axis.

It can also be expressed as 1 block from $y=-x$ and 3 blocks from $y=x$

Motivation for Dimension Reduction

Complex systems often must be modeled with large datasets, having dozens of columns.
Often, several columns can be adding similar information to the model. So, there is a certain level of redundancy.

Additionally, datasets with too many features may be difficult to represent graphically.

Individual	Height (cm)	Weight (kg)	Income (\$)	Number of Children
Person A	165	65	60,000	2
Person B	168	63	100,000	5
Person C	159	82	50,000	1
Person D	183	68	90,000	4
Person E	187	87	110,000	5
Person F	189	89	95,000	4

Four dimensions; can't even be graphed!

Motivation for Dimension Reduction

Individual	Height (cm)	Weight (kg)	Income (\$)	Number of Children
Person A	165	65	60,000	2
Person B	168	63	100,000	5
Person C	159	82	50,000	1
Person D	183	68	90,000	4
Person E	187	87	110,000	5
Person F	189	89	95,000	4

So, how do we reduce dimensionality without significant loss of information?

Enter...

Principal Component Analysis

Principal Component Analysis

Principal Component Analysis

Principal Component Analysis

How do we decide what
features to remove when reducing the dimensionality of

Principal Components

Think of these as new axes that we are orienting our data across.
So instead of x, y, z, rather some linear combination of them.
How do we decide what features to remove when They are done such that each principal component is uncorrelated with the others, the data? so that translation across each component indicates different information. So, they represent directions of maximal variance.

This allows differences between data points to become more prominent
Variance

Represents percentage of variance for each PC. Notice how PC1 has the most and it drops after that.

Principal Component Analysis

Principal Component Analysis

Principal Component Analysis

Not all points lie on the line! How do we quantify the spread or variance of the points?

Principal Component Analysis

The degree to which a base aligns with the variance represents the amount of information separations along that basis can convey.

$1^{\text {st }}$ base or "Principal Component 1". Line that maximizes sum of distances of projections of points from origin. In essence, maximizes variance of distribution.

Principal Component Analysis

The projection (A^{\prime}) of a point A on a particular line p is the point such that the line $A A^{\prime}$ is perpendicular to p .

Principal Component Analysis

Idea behind this principal component line is that it is an axis along the "maximally variant" direction.

The distance we are

Principal Component Analysis

How exactly does maximizing the sum of the distances of these projections from the origin correspond to
maximizing the variance along
that line?

Principal Component Analysis

How exactly does maximizing the sum of the distances of these projections from the origin correspond to maximizing the variance along

Built using
https://gist.github.com/anonymous/7d888663c6ec679ea6542871
5b99bfdd

Principal Component Analysis

How exactly does maximizing the sum of the distances of these points from the origin correspond to maximizing the variance along that line?

Principal Component Analysis

Standardization
Covariance Matrix Calculation
Eigenvector Calculation
Form Principal Components and Build Graph

Standardization

Individual	Height (cm)	Weight (kg)	Income (\$)	Number of Children
Person A	165	65	60,000	2
Person B	168	63	100,000	5
Person C	159	82	50,000	1
Person D	183	68	90,000	4
Person E	187	87	110,000	5
Person F	189	89	95,000	4

Compare the data of each of the 4 columns. How do they differ numerically?

Standardization

Individual	Height (cm)	Weight (kg)	Income (\$)	Number of Children
Person A	165	65	60,000	2
Person B	168	63	100,000	5
Person C	159	82	50,000	1
Person D	183	68	90,000	4
Person E	187	87	110,000	5
Person F	189	89	95,000	4
Range	$159-189$	$63-89$	$50,000-110,000$	$1-5$
Variance	161.76	135.87	564166666	2.7

Compare the data of each of the 4 columns. How do they differ numerically?

Their range varies drastically. Consequently, their variances are very different.

Standardization

Individual	Height (cm)	Weight (kg)	Income (\$)	Number of Children
Person A	165	65	60,000	2
Person B	168	63	100,000	5
Person C	159	82	50,000	1
Person D	183	68	90,000	4
Person E	187	87	110,000	5
Person F	189	89	95,000	4
Range	$159-189$	$63-89$	$50 k-100 k$	$1-5$
Variance	161.76	135.87	564166670	2.7

If this is not addressed, some of the feature columns will dominate over the other ones.
This can bias the results and final principal component analysis; making it difficult to view differences between values in one column compared to another.

So final graph may have the differences between the weights of various persons be miniscule.

Standardization

So, how do we adjust our data
so these differences are not
as drastic?

Standardization

Idea: we want to put different variables on the same scale.
This can mean many things from giving them the same mean and standard deviation, to keeping the range consistent, and so on.

Here, we will use a method called z -scoring.
The rescaled

$$
z=\frac{\text { value }- \text { mean }}{\text { standard deviation }}
$$

distribution will have a mean of 0 and standard deviation of 1

Principal Component Analysis

Standardization
Covariance Matrix Calculation
Eigenvector Calculation
Form Principal Components and Build Graph

Covariance Matrix Calculation

Covariance is really just a measure of how correlated two variables/features are.
If your covariance is positive, that means there's a positive correlation.
If your covariance is positive, that means there's a negative correlation.

$$
\operatorname{Cov}(x, y)=\sum \frac{\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{N-1}
$$

Covariance Matrix Calculation

Review: Lecture 7; feature engineering

Make new features with high variance.
Pick new features with low correlation to other features.

What should our new features look like?

Covariance Matrix Calculation

Can measure this correlation using covariance. If covariance is positive, then features are correlated in the sense they both increase together. If covariance is negative, then features are inversely correlated.

$$
\left[\begin{array}{ccc}
\operatorname{Cov}(x, x) & \operatorname{Cov}(x, y) & \operatorname{Cov}(x, z) \\
\operatorname{Cov}(y, x) & \operatorname{Cov}(y, y) & \operatorname{Cov}(y, z) \\
\operatorname{Cov}(z, x) & \operatorname{Cov}(z, y) & \operatorname{Cov}(z, z)
\end{array}\right]
$$

$$
\operatorname{Cov}(x, y)=\sum \frac{\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{N-1}
$$

Principal Component Analysis

Standardization
Covariance Matrix Calculation
Eigenvector Calculation
Form Principal Components and Build Graph

Eigenvector Calculation

We can think of matrices as transformations of vectors.
When you multiply a matrix with a vector; two things happen:

1. It scales the vector.
2. It rotates the vector

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
5 \\
4
\end{array}\right]
$$

Eigenvector Calculation

We can think of matrices as transformations of vectors.
When you multiply a matrix with a vector; two things happen:

1. It scales the vector.
2. It rotates the vector

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
5 \\
4
\end{array}\right]
$$

Eigenvector Calculation

Eigenvectors are characteristic vectors specific to a matrix or transformation.

Graphically speaking, when you multiply a matrix with its specific eigenvectors, the eigenvectors don't get rotated, only scaled.

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
3
\end{array}\right]=3\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Eigenvector Calculation

Eigenvectors are characteristic vectors specific to a matrix or transformation.

Graphically speaking, when you multiply a matrix with its specific eigenvectors, the eigenvectors don't get rotated, only scaled.

$$
\begin{aligned}
& \begin{array}{l}
\text { The factor by which an } \\
\text { eigenvector is scaled is } \\
\text { called its eigenvalue }
\end{array} \\
& {\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
3
\end{array}\right]=3\left[\begin{array}{l}
1 \\
1
\end{array}\right]}
\end{aligned}
$$

Eigenvector Calculation

Eigenvector Calculation

$\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 3\end{array}\right]=3\left[\begin{array}{l}1 \\ 1\end{array}\right]$

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=-1\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Eigenvector Calculation

The two eigenvectors are perpendicular to each
other!

Eigenvectors act as basis vectors!
Every point in 2-D can be expressed as some combination of $(1,1)$ and ($-1,1$).

Eigenvector Calculation

Eigenvector 2

Eigenvector Calculation

What matrix do we find the eigenvectors of to get our "new features" in PCA?

Eigenvector Calculation

By calculating the eigenvectors of the covariance matrix, we can get our principal components.

We use the eigenvectors to create a basis for the graph. These basis vectors represent the principal components.

Since these are eigenvectors of the covariance matrix, they represent directions of maximal variance.

$$
A=\left[\begin{array}{ccc}
\operatorname{Cov}(x, x) & \operatorname{Cov}(x, y) & \operatorname{Cov}(x, z) \\
\operatorname{Cov}(y, x) & \operatorname{Cov}(y, y) & \operatorname{Cov}(y, z) \\
\operatorname{Cov}(z, x) & \operatorname{Cov}(z, y) & \operatorname{Cov}(z, z)
\end{array}\right]
$$

$$
A v=\lambda v
$$

v is the eigenvector and
lambda is the eigenvalue

Eigenvector Calculation

$$
\begin{aligned}
& A v=\lambda v \\
& A v-\lambda v=0 \\
& (A-\lambda) v=0 \\
& |A-\lambda|=0
\end{aligned}
$$

$$
A=\left[\begin{array}{ccc}
\operatorname{Cov}(x, x) & \operatorname{Cov}(x, y) & \operatorname{Cov}(x, z) \\
\operatorname{Cov}(y, x) & \operatorname{Cov}(y, y) & \operatorname{Cov}(y, z) \\
\operatorname{Cov}(z, x) & \operatorname{Cov}(z, y) & \operatorname{Cov}(z, z)
\end{array}\right]
$$

When you find the root of the resulting polynomial, you will find all the possible eigenvalues. For each eigenvalue, plug it into the original equation to find the corresponding eigenvector v .

Principal Component Analysis

Standardization
Covariance Matrix Calculation
Eigenvector Calculation
Form Principal Components and Build Graph

Form Principal Components and Build Graph

Let the three eigenvalues of the three eigenvectors v_{1}, v_{2}, v_{3} be $\lambda_{1}, \lambda_{2}, \lambda_{3}$ such that $\lambda_{1}>=\lambda_{2}>=\lambda_{3}$

Then, the principal components will be $v_{1}, v_{2,}, v_{3}$ and the variances they carry are in the ratio of $\lambda_{1}, \lambda_{2}, \lambda_{3}$

But if the eigenvectors are from the covariance matrix
which represents the correlation of all the features, where will we be removing features?

Form Principal Components and Build Graph

But if the eigenvectors are from the covariance matrix which represents the correlation of all the features, where will we be removing features?

If the percentage of variance of a particular principal component is small enough, discard it. You've now removed a dimension! Form a new matrix which only has the eigenvectors/principal components you've selected.

Let this matrix be called your Feature Vector.

Now, it's time to reorient the original data along these new axes

Form Principal Components and Build Graph

FinalDataSet $=$ FeatureVector ${ }^{T} *$ StandardizedOriginalDataSet T

Form Principal Components and Build Graph

A real-world application of PCA

IQ testing!
SAT Math

SAT Verbal

