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Credit: Andrew Ng, Machine Learning 

Introducing Unsupervised Learning

https://www.coursera.org/learn/machine-learning/home/week/1


Unsupervised Learning

Clustering
Dimension reduction  
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Credit: Andrew Ng, Machine Learning 
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Grouping Customers

Credit: Andrew Ng, Machine Learning 

https://www.coursera.org/learn/machine-learning/home/week/1


Anomaly Detection

Credit: Anomaly Detection

https://towardsdatascience.com/unsupervised-anomaly-detection-on-spotify-data-k-means-vs-local-outlier-factor-f96ae783d7a7


Comfort

Fashion

really 
terrible

clusters can tell us specifics about the relationship of data

…even if they are unlabeled! unsupervised 
learning!

how do we find the 
clusters?

K-means clustering



Comfort

Fashion

1. pick a K-number of 
clusters
2. randomly pick a series 
of “centroids”
3. assign each particle to 
the centroid closest to it

k=6



Comfort
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4.move the centroid to 
the weighted geometric 
center of samples 
assigned to it
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the centroid closest to it
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k=65. Repeat 3-4 until 
centroids stop moving!

4.move the centroid to 
the weighted geometric 
center of samples 
assigned to it
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4.move the centroid to 
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1. pick a K-number of 
clusters
2. randomly pick a series 
of “centroids”
3. assign each particle to 
the centroid closest to it



Comfort

Fashion

k=6 Did we get back 
the same clusters?

Nope. And that’s OK.

5. Repeat 3-4 until 
centroids stop moving!

4.move the centroid to 
the weighted geometric 
center of samples 
assigned to it

1. pick a K-number of 
clusters
2. randomly pick a series 
of “centroids”
3. assign each particle to 
the centroid closest to it



Did we get back the same clusters?
Nope. And that’s OK.

K-means is an indeterministic algorithm—it has built-in randomness



Unsupervised Learning

Clustering
Dimension reduction  



Exploring Dimensions and Basis Vectors

x

y

z

(2,3,1)

 



Exploring Dimensions and Basis Vectors

x

y

y=x
y=-x

This gray point can be expressed as 
3 blocks from x axis and 2 blocks 
from the y axis.

It can also be expressed as 1 block 
from y = -x and 3 blocks from y=x



Motivation for Dimension Reduction

Complex systems often must be modeled with large datasets, having dozens of columns.

Often, several columns can be adding similar information to the model. So, there is a 
certain level of redundancy.

Additionally, datasets with too many features may be difficult to represent graphically.

Individual  Height (cm) Weight (kg) Income ($) Number of 
Children

Person A 165 65 60,000 2

Person B 168 63 100,000 5

Person C 159 82 50,000 1

Person D 183 68 90,000 4

Person E 187 87 110,000 5

Person F 189 89 95,000 4

Four dimensions; 
can’t even be 
graphed! 



Motivation for Dimension Reduction

Individual  Height (cm) Weight (kg) Income ($) Number of 
Children

Person A 165 65 60,000 2

Person B 168 63 100,000 5

Person C 159 82 50,000 1

Person D 183 68 90,000 4

Person E 187 87 110,000 5

Person F 189 89 95,000 4

So, how do we reduce 
dimensionality without 

significant loss of 
information?



Enter…

Principal Component Analysis



Principal Component Analysis

We can represent all 
data points along x,y,z 
axes in terms of new 
basis vectors PC1, PC2, 
and PC3.

PC1

PC2

x

z

y

PC3



Principal Component Analysis

3-dimensional graph 
reduced to 
2-dimensional graph 
across different basis 
vectors (“principal 
components”)

PC1

PC2

x

z

y



Principal Component Analysis

How do we decide what 
features to remove when 

reducing the dimensionality of 
the data?



Principal Components
Think of these as new axes that we are orienting our data across.

So instead of x,y, z, rather some linear combination of them.

They are done such that each principal component is uncorrelated with the others, 
so that translation across each component indicates different information. So, they 
represent directions of maximal variance.

This allows differences between data points to become more prominent

How do we decide what 
features to remove when 

reducing the dimensionality of 
the data?

Represents percentage 
of variance for each PC. 
Notice how PC1 has the 
most and it drops after 
that.

Since PC3 accounts for a 
very small percentage of 
overall variance, we can 
remove it. This is how PCA 
reduces dimensionality



Principal Component Analysis



Principal Component Analysis

Notice how the points 
are a lot further away 
on average from each 
other and from the 
origin.

We can quantify the 
“spread” of the points by 
measuring the sum of the 
distances of these points 
from the origin



Principal Component Analysis

Not all points lie on the 
line! How do we 
quantify the spread or 
variance of the points?



Principal Component Analysis

1st base or “Principal 
Component 1”. Line that 
maximizes sum of 
distances of projections 
of points from origin. In 
essence, maximizes 
variance of distribution.

The degree to which a 
base aligns with the 
variance represents the 
amount of information 
separations along that 
basis can convey.



Principal Component Analysis

The projection of the 
point A on the purple 
line.

The projection (A’) of a 
point A on a particular line 
p is the point such that the 
line  AA’ is perpendicular 
to p.

(0,0)
The distance we are 
trying to maximize

A

A’

p



Principal Component Analysis

Along the “maximally variant” 
direction, the distance between 
the projections of two points on 
this line corresponds to the 
greatest variation in the values 
of the two points.

Idea behind this principal 
component line is that it is 
an axis along the 
“maximally variant” 
direction.

(0,0)
The distance we are 
trying to maximize



Principal Component Analysis

How exactly does maximizing 
the sum of the distances of 
these projections from the 

origin correspond to 
maximizing the variance along 

that line?



Principal Component Analysis
How exactly does maximizing 
the sum of the distances of 
these projections from the 

origin correspond to 
maximizing the variance along 

that line?

Built using 
https://gist.github.com/anonymous/7d888663c6ec679ea6542871
5b99bfdd



Principal Component Analysis
How exactly does maximizing 
the sum of the distances of 
these points from the origin 

correspond to maximizing the 
variance along that line?



Principal Component Analysis

Standardization

Covariance Matrix Calculation

Eigenvector Calculation

Form Principal Components and Build Graph



Standardization

Individual Height (cm) Weight (kg) Income ($) Number of 
Children

Person A 165 65 60,000 2

Person B 168 63 100,000 5

Person C 159 82 50,000 1

Person D 183 68 90,000 4

Person E 187 87 110,000 5

Person F 189 89 95,000 4

Compare the data of each of the 4 columns. How do they 
differ numerically?



Standardization
Individual Height (cm) Weight (kg) Income ($) Number of 

Children

Person A 165 65 60,000 2

Person B 168 63 100,000 5

Person C 159 82 50,000 1

Person D 183 68 90,000 4

Person E 187 87 110,000 5

Person F 189 89 95,000 4

Compare the data of each of the 4 columns. How do they 
differ numerically?

Their range varies drastically. Consequently, their variances 
are very different.

Range 159-189 63-89 50,000-110,000 1-5

Variance 161.76 135.87 564166666 2.7



Standardization
Individual Height (cm) Weight (kg) Income ($) Number of 

Children

Person A 165 65 60,000 2

Person B 168 63 100,000 5

Person C 159 82 50,000 1

Person D 183 68 90,000 4

Person E 187 87 110,000 5

Person F 189 89 95,000 4

Range 159-189 63-89 50k-100k 1-5

Variance 161.76 135.87 564166670 2.7

If this is not addressed, some of the feature columns will dominate over the other ones. 

This can bias the results and final principal component analysis; making it difficult to view 
differences between values in one column compared to another.

So final graph may have the differences between the weights of various persons be 
miniscule.



Standardization

So, how do we adjust our data 
so these differences are not 

as drastic?



Standardization

Idea: we want to put different variables on the same scale.

This can mean many things from giving them the same mean and standard deviation, to 
keeping the range consistent, and so on.

Here, we will use a method called z-scoring.
The rescaled 
distribution will have a 
mean of 0 and standard 
deviation of 1



Principal Component Analysis

Standardization

Covariance Matrix Calculation

Eigenvector Calculation

Form Principal Components and Build Graph



Covariance Matrix Calculation

Covariance is really just a measure of how correlated two variables/features are. 

If your covariance is positive, that means there’s a positive correlation.

If your covariance is positive, that means there’s a negative correlation.

 



Covariance Matrix Calculation

What should our new features 
look like?

Make new features with high variance.

Pick new features with low correlation to other features.

Review: Lecture 7; feature engineering



Covariance Matrix Calculation

 

Can measure this correlation using covariance. If covariance is positive, then features are 
correlated in the sense they both increase together. If covariance is negative, then features 
are inversely correlated.



Principal Component Analysis

Standardization

Covariance Matrix Calculation

Eigenvector Calculation

Form Principal Components and Build Graph



Eigenvector Calculation

We can think of matrices as transformations of vectors.

When you multiply a matrix with a vector; two things happen:

1. It scales the vector.

2. It rotates the vector

(1,2)

 



Eigenvector Calculation

We can think of matrices as transformations of vectors.

When you multiply a matrix with a vector; two things happen:

1. It scales the vector.

2. It rotates the vector

(5,4)

 



Eigenvector Calculation

Eigenvectors are characteristic vectors specific to a matrix or 
transformation.

Graphically speaking, when you multiply a matrix with its specific 
eigenvectors, the eigenvectors don’t get rotated, only scaled.

(1,1)
 



Eigenvector Calculation

Eigenvectors are characteristic vectors specific to a matrix or 
transformation.

Graphically speaking, when you multiply a matrix with its specific 
eigenvectors, the eigenvectors don’t get rotated, only scaled.

(3,3)

 

The factor by which an 
eigenvector is scaled is 
called its eigenvalue



Eigenvector Calculation

(1,1)

 

(-1,1)

 



Eigenvector Calculation

(3,3)

 

(1,-1)

 



Eigenvector Calculation

Eigenvectors  act as basis vectors! 

Every point in 2-D can be 
expressed as some combination 
of (1,1) and (-1,1).

The two eigenvectors are 
perpendicular to each 
other!



Eigenvector Calculation

Fixed 
acidity

Citric 
acid

Eigenvector 1

Eigenvector 2



Eigenvector Calculation

What matrix do we find the 
eigenvectors of to get our 

“new features” in PCA?



Eigenvector Calculation

By calculating the eigenvectors of the covariance matrix, we can get our principal 
components. 

We use the eigenvectors to create a basis for the graph. These basis vectors represent the 
principal components.

Since these are eigenvectors of the covariance matrix, they represent directions of 
maximal variance.

 
A =

v is the eigenvector and 
lambda is the eigenvalue



Eigenvector Calculation

 

 
 

 

 

When you find the root of the resulting polynomial, you will 
find all the possible eigenvalues. For each eigenvalue, plug it 
into the original equation to find the corresponding 
eigenvector v.



Principal Component Analysis

Standardization

Covariance Matrix Calculation

Eigenvector Calculation

Form Principal Components and Build Graph



Form Principal Components and Build Graph

 

 

But if the eigenvectors are 
from the covariance matrix 

which represents the 
correlation of all the features, 

where will we be removing 
features?



Form Principal Components and Build Graph
But if the eigenvectors are 
from the covariance matrix 

which represents the 
correlation of all the features, 

where will we be removing 
features?

 

 



Now, it’s time to reorient the original data 
along these new axes



Form Principal Components and Build Graph

PC1

PC2

PC3



Form Principal Components and Build Graph

PC1

PC2

The third dimension was 
removed as it did not 
contribute much in terms of 
variance

PC3



A real-world application of PCA

 

SAT Verbal

SAT Math
PC1 or g factor


