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Introducing Unsupervised Learning

Supervised learning

Learn from data labeled
with the “right answers”

Unsupervised learning

;

AN % A <
X 3¢ A
X A A
age OOO age A ﬁ
O
=1 t : > 1 : >
umor size tumor size

Credit: Andrew Ng, Machine Learning



https://www.coursera.org/learn/machine-learning/home/week/1

Unsupervised Learning

Clustering
Dimension reduction



Clustering: Google news

Giant panda gives birth to rare twin cubs at Japan's '
oldest zoo R

USA TODAY - 6 hours aqo

Giant panda gives birth to twin cubs at Japan's oldest zoo

urs ago

Giant panda gives birth to twin cubs at Tokyo's Ueno Zoo
WHBL News - 16 hours ago

A Joyful Surprise at Japan's Oldest Zoo: The Birth of Twin
Pandas

-

he New York Times - 1 hour ago

Twin Panda Cubs Born at Tokyo's Ueno Zoo

PEOPLE - 6 hours ago

= View Full Coverage

Credit: Andrew Ng, Machine Learning


https://www.coursera.org/learn/machine-learning/home/week/1

Clustering: DNA microarray

genes
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Credit: Andrew Ng, Machine Learning



https://www.coursera.org/learn/machine-learning/home/week/1

Clustering: DNA microarray
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Credit: Andrew Ng, Machine Learning



https://www.coursera.org/learn/machine-learning/home/week/1

Clustering: Grouping customers

Credit: Andrew Ng, Machine Learning



https://www.coursera.org/learn/machine-learning/home/week/1

Grouping Customers

Credit: Andrew Ng, Machine Learning



https://www.coursera.org/learn/machine-learning/home/week/1

Anomaly Detection

Credit: Anomaly Detection



https://towardsdatascience.com/unsupervised-anomaly-detection-on-spotify-data-k-means-vs-local-outlier-factor-f96ae783d7a7

K-means clustering
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clusters can tell us specifics about the relationship 6F¥4ta
unsupervised

...even if they are unlabeled! _
learning!



Comfort

1. pick a K-number of
clusters

2.randomly pick a series
of “centroids”

3. assign each particle to
the centroid closest to it

k=6

Fashion
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Comfort

1. pick a K-number of
clusters

2.randomly pick a series
of “centroids”

3. assign each particle to
the centroid closest to it
4.move the centroid to
the weighted geometric
center of samples
assigned to it

5. Repeat 3-4 until
centroids stop moving!

k=6

Fashion



Comfort

1. pick a K-number of
clusters

2.randomly pick a series
of “centroids”

3. assign each particle to
the centroid closest to it
4.move the centroid to
the weighted geometric
center of samples
assigned to it

5. Repeat 3-4 until
centroids stop moving!

k=6

Fashion



Comfort

1. pick a K-number of
clusters

2. randomly pick a series
of “centroids”

3. assign each particle to
the centroid closest to it

4.move the centroid to
the weighted geometric
center of samples
assigned to it

5. Repeat 3-4 until
centroids stop moving!
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Did we get back
the same clusters?
Nope. And that’s OK.



Did we get back the same clusters?
Nope. And that’s OK.

K-means is an indeterministic algorithm—it has built-in randomness



Unsupervised Learning

Clustering
Dimension reduction



Exploring Dimensions and Basis Vectors

y 4

y (2,3,1) is a datapoint.
2

(2,3,1) 3 | is the vector to said datapoint.
1




Exploring Dimensions and Basis Vectors

y=-X

74

y=X

This gray point can be expressed as
3 blocks from x axis and 2 blocks
from the y axis.

It can also be expressed as 1 block
fromy = -x and 3 blocks from y=x



Motivation for Dimension Reduction

Complex systems often must be modeled with large datasets, having dozens of columns.

Often, several columns can be adding similar information to the model. So, there is a
certain level of redundancy.

Additionally, datasets with too many features may be difficult to represent graphically.

Weight (kg) Income (S) Number of
Children

Person A
Person B
Person C
Person D
Person E

Person F

168
159
183
187
189

63
82
68
87
89

60,000
100,000
50,000
90,000
110,000
95,000

~ 00 A 2 00N

Four dimensions;
can’t even be
graphed!



Motivation for Dimension Reduction

Weight (kg) Income (S) Number of
Children

Person A 60,000

So, how do we reduce
Person B 168 63 100,000 5 dimensionality without
Person C 159 82 50,000 1 significant loss of

information?

Person D 183 68 90,000 4
Person E 187 87 110,000 5
Person F 189 89 95,000 4



Enter...
Principal Component Analysis



Principal Component Analysis
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We can represent all
data points along x,y,z
axes in terms of new

basis vectors PC1, PC2,

and PC3.

PC3

PC2



Principal Component Analysis

y 4

3-dimensional graph
reduced to
2-dimensional graph
across different basis
vectors (“principal
components”)

PC2



Principal Component Analysis

How do we decide what
features to remove when
reducing the dimensionality of
the data?

\



Principal Components

Think of these as new axes that we are orienting our data across.

So instead of x,y, z, rather some linear combination of them.

How do we decide what
features to remove when
reducing the dimensionality of

They are done such that each principal component is uncorrelated with the others, the data?
so that translation across each component indicates different information. So, they
represent directions of maximal variance.

This allows differences between data points to become more prominent

Represents percentage
of variance for each PC.
Notice how PC1 has the
most and it drops after
that.

P
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Variance

Since PC3 accounts for a
very small percentage of
— k overall variance, we can

PC 2

PC3

remove it. This is how PCA
reduces dimensionality



Principal Component Analysis



Principal Component Analysis

We can quantify the

“spread” of the points by Notice how the points
measuring the sum of the are a lot further away
distances of these points on average from each

from the origin

other and from the
‘/ origin.

\\\\



Principal Component Analysis

Not all points lie on the
line! How do we
quantify the spread or

‘/ variance of the points?




Principal Component Analysis

The degree to which a
base aligns with the
variance represents the
amount of information
separations along that
basis can convey.

15t base or “Principal
Component 1”. Line that
maximizes sum of
distances of projections
of points from origin. In
essence, maximizes
variance of distribution.



Principal Component Analysis

The distance we are
trying to maximize
The projection (A) of a T
point A on a particular line
p is the point such that the

line AA'is perpendicular
top.

(0,0)

[ ,
Se._.- <w-_The projection of the
point A on the purple

A’ line



Principal Component Analysis

The distance we are
Idea behind this principal trying to maximize (0,0)
component line is that it is T
an axis along the
“maximally variant”
direction.

Along the “maximally variant”
direction, the distance between
the projections of two points on
this line corresponds to the
greatest variation in the values
of the two points.



Principal Component Analysis

How exactly does maximizing
the sum of the distances of
these projections from the

origin correspond to
maximizing the variance along

’r7 line?

i



Principal Component Analysis

Built using

How exactly does maximizing
the sum of the distances of
these projections from the

origin correspond to
maximizing the variance along
that line?

\
f

https://gist.github.com/anonymous/7d888663céec6/7/%eab542871

5b99bfdd



Principal Component Analysis

How exactly does maximizing
the sum of the distances of
these points from the origin
# correspond to maximizing the
variance along that line?




Principal Component Analysis

Standardization
Covariance Matrix Calculation
Eigenvector Calculation

Form Principal Components and Build Graph



Standardization

Weight (kg) Income ($) Number of
Children

Person A 60,000 2
Person B 168 63 100,000 5
Person C 159 82 50,000 1
Person D 183 68 90,000 4
Person E 187 87 110,000 5
Person F 189 89 95,000 4

Compare the data of each of the 4 columns. How do they
differ numerically?



Standardization

Weight (kg) Income (S) Number of
Children

Person A 60,000 2
Person B 168 63 100,000 5
Person C 159 82 50,000 1
Person D 183 68 90,000 4
Person E 187 87 110,000 5
Person F 95,000 4

M_ 159-189 63-89 50,000-110,000

Compare the data of each of the 4 columns. How do they
differ numerically?

Their range varies drastically. Consequently, their variances
are very different.



Standardization

Weight (kg) | Income (S) | Number of
Children

Person A 60,000 2
Person B 168 63 100,000 5
Person C 159 82 50,000 1
Person D 183 68 90,000 4
Person E 187 87 110,000 5
Person F 189 89 95,000 4

161.76 135.87 564166670

If this is not addressed, some of the feature columns will dominate over the other ones.

This can bias the results and final principal component analysis; making it difficult to view
differences between values in one column compared to another.

So final graph may have the differences between the weights of various persons be
miniscule.



Standardization

So, how do we adjust our data
so these differences are not
as drastic?

\
f



Standardization

|dea: we want to put different variables on the same scale.

This can mean many things from giving them the same mean and standard deviation, to
keeping the range consistent, and so on.

Here, we will use a method called z-scoring.
The rescaled

distribution will have a
value — mean ‘/ mean of 0 and standard
standard deviation deviation of 1

-~
A~



Principal Component Analysis

Standardization
Covariance Matrix Calculation
Eigenvector Calculation

Form Principal Components and Build Graph



Covariance Matrix Calculation

Covariance is really just a measure of how correlated two variables/features are.
If your covariance is positive, that means there’s a positive correlation.

If your covariance is positive, that means there’s a negative correlation.

Cov(x, y) . z(xl o x)(yll - y)



Covariance Matrix Calculation

What should our new features
look like?

\
f

Review: Lecture 7; feature engineering

Make new features with high variance.

Pick new features with low correlation to other features.



Covariance Matrix Calculation

Can measure this correlation using covariance. If covariance is positive, then features are
correlated in the sense they both increase together. If covariance is negative, then features
are inversely correlated.

[(’()I’(.‘Z‘.‘J‘) Cov(z,y) Cov(z, z)
\. Cov(y,z) Covu(y,y) Cou(y,z)

x; =) — )
e =
_ : ; 5 ov(x,y) N —1
Cov(z,z) Cov(z,y) Cou(z,z)

1
J



Principal Component Analysis

Standardization
Covariance Matrix Calculation
Eigenvector Calculation

Form Principal Components and Build Graph



Eigenvector Calculation

We can think of matrices as transformations of vectors.
When you multiply a matrix with a vector; two things happen:
1. Itscalesthe vector.

2. Itrotates the vector

@ (1,2

21l

—_—

H



Eigenvector Calculation

We can think of matrices as transformations of vectors.
When you multiply a matrix with a vector; two things happen:
1. Itscalesthe vector.

2. Itrotates the vector

@ (5.4)
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Eigenvector Calculation

Eigenvectors are characteristic vectors specific to a matrix or
transformation.

Graphically speaking, when you multiply a matrix with its specific
eigenvectors, the eigenvectors don’t get rotated, only scaled.

o (1)

il ] =[1-300



Eigenvector Calculation

Eigenvectors are characteristic vectors specific to a matrix or
transformation.

Graphically speaking, when you multiply a matrix with its specific
eigenvectors, the eigenvectors don’t get rotated, only scaled.

The factor by which an
eigenvector is scaled is
called its eigenvalue (3,3)

:
il ]=E1-301



Eigenvector Calculation

('1,1)

/Q (1,1) O\

2all:]= L3 -3l 211 ] =14



Eigenvector Calculation

/

3] =E1-3L]



Eigenvector Calculation

The two eigenvectors are
perpendicular to each

other! Y 4 Every point in 2-D can be
expressed as some combination
of (1,1) and (-1,1).

Eigenvectors act as basis vectors!



Eigenvector Calculation

Citric Eigenvector 2
acid
O
o | o )
Q

Fixed
acidity Eigenvector 1



Eigenvector Calculation

What matrix do we find the
eigenvectors of to get our
"new features" in PCA?

\
f



Eigenvector Calculation

By calculating the eigenvectors of the covariance matrix, we can get our principal
components.

We use the eigenvectors to create a basis for the graph. These basis vectors represent the
principal components.

Since these are eigenvectors of the covariance matrix, they represent directions of
maximal variance.

Av = Qv

v is the eigenvector and
lambda is the eigenvalue

I—('Ozr(;z‘.;z') Cov(z,y) (f'ov(.z',:)]
Cov(z,z) Cou(z,vy) ('ov(:.:)J

A= { Cov(y,z) Cov(y,y) Cou(y,z)



Eigenvector Calculation

Av = Av

Av— v =0 A= {
A= AHv=0

|JA— 2] =0

When you find the root of the resulting polynomial, you will
find all the possible eigenvalues. For each eigenvalue, plug it
into the original equation to find the corresponding
eigenvector v.

Cov(z, )
Cov(y,x)
Cov(z, )

Cov(z,y)

Cov(y.y)
Cov(z,y)



Principal Component Analysis

Standardization
Covariance Matrix Calculation
Eigenvector Calculation

Form Principal Components and Build Graph



Form Principal Components and Build Graph

But if the eigenvectors are
from the covariance matrix
which represents the
correlation of all the features,
where will we be removing
features?

Let the three eigenvalues of the three eigenvectors vy, v, ,v3 be 1;,1;,13
such that 1; >= 1, >= 15

Then, the principal components will be v, v, , v3 and the variances they
carry are in the ratio of 14,1,, 15



Form Principal Components and Build Graph

But if the eigenvectors are
from the covariance matrix
which represents the
correlation of all the features
where will we be removing
features?

If the percentage of variance of a particular principal
component is small enough, discard it. You've now removed
a dimension! Form a new matrix which only has the

+ eigenvectors/principal components you've selected.

Let this matrix be called your Feature Vector.

Variance

PC1 PC2 PC3




Now, it’s time to reorient the original data
along these new axes



Form Principal Components and Build Graph

PC3

FinalDataSet = FeatureVector' x StandardizedOriginal DataSet”



Form Principal Components and Build Graph

PC2

The third dimension was
removed as it did not
contribute much in terms of
variance O

- ° 2
. PC1
Variance o © O

80

: m
PC1

PC 2 PC3

FinalDataSet = FeatureVector! x StandardizedOriginal DataSet”



A real-world application of PCA

PC1 or g factor

SAT Math O
Y e
I1Q testing!
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SAT Verbal



